

Curso

2022-2023

SÍNTESIS DE MATERIALES COMBINADOS CON g-C₃N₄ Y SUAPLICACIÓN COMO FOTOCATALIZADORES

Diego Vega Castellano¹, Andrea Illana Sánchez² y Elisenda Pulido Melián¹

¹ Universidad de las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, España

² Universidad Complutense de Madrid, 28040 Madrid, España

INTRODUCCIÓN

En los últimos años, la creciente preocupación por el agotamiento de los combustibles fósiles, así como su impacto negativo sobre la contaminación ambiental, ha llevado a la búsqueda de tecnologías sostenibles y respetuosas con el medioambiente. En este contexto, la fotocatálisis ha surgido como una estrategia prometedora para enfrentar estos desafíos, dado que puede utilizar la energía solar para producir hidrógeno verde.

OBJETIVOS

El objetivo principal de este Trabajo de Fin de Grado fue la síntesis y caracterización de diferentes fotocatalizadores, basados en óxidos simples (óxido de titanio, TiO₂) y mixtos (perovskitas KNbO₃), solos y/o combinados con nitruro de carbono grafitizado ($g-C_3N_4$). Los cuales han sido modificados con depósitos de cobre (Cu) y/o platino (Pt) para evaluar su capacidad fotocatalítica en la producción de hidrógeno (H₂).

METODOLOGÍA

SÍNTESIS DE FOTOCATALIZADORES – DEPOSICIÓN DE METALES

g-C₃N₄: pirólisis de urea a 550 °C (5 °C/min) tras 4 h. Exfoliación con solución ácida de K₂Cr₂O₇.

TiO₂HT y combinado con g-C₃N₄: síntesis solgel e hidrotermal a 150 °C durante 24 h.

KNbO3: vía hidrotermal (180°C; 48 h), variando el ratio molar KOH/Nb₂O₅ y el volumen de KOH.

Deposición de Cu por reducción química con NaBH₄ y fotodeposición de Pt con lámpara UVA de Hg (400 W) y adición de isopropanol

deposición de c) Cu y d) Pt.

ENSAYO DE PRODUCCIÓN DE H₂

En el fotorreactor de 200 ml se dispuso una disolución al 25% de metanol y 1 g/l de fotocatalizador. Se ajustó el pH a 5. Tras purgar, se monitoreó la producción de H₂ durante 8 h con un cromatógrafo de gases (GC-2010 Plus). Se mantuvo un flujo de N₂ a 10 ml/min, agitación a 700 rpm e iluminación UVA, por 2 lámparas (Solarium PhilipsTM HB 175) con 4 tubos fluorescentes (15 W Philips[™] CLEO).

Fig. 2. Fotorreactor durante el ensayo de producción de H₂

TÉCNICAS DE CARACTERIZACIÓN Y ANÁLISIS: difracción de rayos X (XRD), microscopía electrónica de barrido de emisión de campo con detector de energía dispersiva (FESEM-EDX), espectroscopia UV-Vis por reflectancia difusa (UV-Vis DRS) y cromatografía de gases (GC).

RESULTADOS

Por XRD se determina que C₃N₄, TiO₂ y COMBINACIONES

50

TiO₂HT posee 100% fase anatasa, y que la adición de un 13,19% de $g-C_3N_4$ (TiO₂HT_C) no varía su estructura cristalina. 600 TiO₂HT_C Intensidad (u.a.) 007 008 007 009 005 005 TiO₂HT Anatasa $g-C_3N_4$ 100

35

45

2θ (°)

Fig. 3. Difractogramas de XRD de TiO₂HT y TiO₂HT_C

La combinación es bastante homogénea y la deposición de metales produce una disminución del tamaño de partícula (FESEM-EDX no mostrado). Respecto al valor de energía de ancho de banda (E_{o}), TiO₂HT lo presenta en el UV y g-C₃N₄ en el Vis. La incorporación de g- C_3N_4 y metales reduce muy poco el E_{g} .

Sobre el ensayo de producción de H₂, la incorporación de g-C₃N₄ no produjo un efecto beneficioso en la producción neta, pero sí se observó una mayor estabilidad en la producción en el tiempo.

Fig. 5. Producción de H₂ TiO₂ y combinaciones, con deposición de Pt

Se sintetizaron 3 niobatos de potasio con estructuras cristalinas (XRD no mostrado): cúbica (c-KNbO₃; $E_g=3.11 \text{ eV}$), ortorrómbica (o-KNbO₃; $E_g=3.15 \text{ eV}$) y tetragonal (t-KNbO₃; $E_g=3.08 \text{ eV}$).

Fig. 6. Micrografías FESEM (x5000) de a) c-KNbO₃ c) o-KNbO₃ y d) t-KNbO₃

Sobre la cúbica se depositó 0,35% Pt en peso

(c-KNbO₃_Pt) y fue sometida al ensayo de producción de H₂. En comparación con los TiO₂ estudiados con depósito de Pt, se evidencia que el flujo de H₂ producido es 45 veces menor.

CONCLUSIONES

15

25

- La adición de $g-C_3N_4$ al TiO₂HT no mejoró su producción neta de H₂, pero aportó estabilidad en el tiempo.
- La deposición de metales reduce el tamaño de partícula y puede introducir defectos en la estructura de los materiales.
- La presencia del Pt produce una mejor producción de H₂ que el Cu solo o su combinación con este.
- La incorporación de $g-C_3N_4$ y de metales reduce muy poco el valor de energía de ancho de banda del TiO₂HT.
- Las perovskitas KNbO₃ no mostraron resultados prometedores para la producción de H₂.